
You probably do need a
cryptographic hash
function
Ruxmon Melbourne, August 2015
Michael Samuel

http://www.ruxmon.com/melbourne/

http://www.ruxmon.com/melbourne/
http://www.ruxmon.com/melbourne/

Background: The basics

Variable length input → fixed length output

Definitions:
Collision: when multiple inputs map one output
Preimage: finding an input to match an output

Uses:
Probabilistic mapping: hash tables, load sharing
Integrity: checksums, MACs, signatures

Background: Hash vs MAC
A Message Authentication Code uses a secret key to
provide security.

MACs still require collision and preimage security,
but they’re only required to provide it
● for those who possess the key
● against those who don’t possess the key

In this presentation I use Hash and MAC somewhat interchangeably.

In most cases it’s clear that you need one or the other, but occasionally it’s borderline.
In general if both will work a MAC is safer.

Problem Statement

Insecure hash functions can be crippled or
disabled by data.

“A good hash function should satisfy two requirements:
1) Its computation should be very fast.
2) It should minimize collisions
Property (a) is machine-dependent, and property (b) is data-dependent.”
 -- Knuth, The Art Of Computer Programming Vol 3 (1997, so I forgive him)

Hash Tables
If an attacker can force all items into a
single bucket, you now just have a linked
list - O(n) lookups instead of O(1).
Inserts are lookup-then-insert - so you
could force n*(n-1)/2 compares.

Language Hash Since

Python SipHash 3.4

Ruby SipHash 1.9.3p327

libstdc++ FNV/Murmur

v8 (js) Jenkins

Go It Depends

Collisions force worst case
behaviour - a DoS attack!

Until recently (see next slide), it was rare that anyone even considered that maybe the
hash function for a hash table needed to be secure. After all, if somebody were to
DoS a hash table they’d only be DoSing themselves.

But this isn’t a safe assumption - worker threads and non-blocking I/O loops shared
by many users is common now - if you can force the CPU to be busy you can stop the
process from serving other users.

Random notes:
- libstdc++ uses FNV if sizeof(size_t) == 4, Murmur if sizeof(size_t) == 8
- Go uses either one of a couple of weak hashes, or a very-reduced-round AES

based hash - depending on machine type
- Go’s hashes are seeded with CPU ticks, which is dubiously secret

Image from http://commons.wikimedia.org/wiki/File:Hashtable_linkedlist_collision.png

http://commons.wikimedia.org/wiki/File:Hashtable_linkedlist_collision.png

SipHash
Designed by J.P. Aumasson and D.J. Bernstein
● Uses a 128-bit key to produce a MAC of the input
● Secret key prevents attacker-controlled collisions
● Fast!

Byte length 8 16 32 64

Cycles 123 134 158 204

Cycles/byte 15.38 8.38 4.25 3.19

Table from https://131002.net/siphash/siphash_slides.pdf

An L3 cache miss (hitting RAM)
is hundreds of cycles +
comparisons, etc.

SipHash has excellent diffusion

See https://131002.net/siphash for papers, code, etc.

There are two variants of SipHash - SipHash-2-4 is 6-round and SipHash-4-8 is 12-
round.

For situations where there’s no compatibility issues (such as in-memory hash tables)
you can choose SipHash-2-4 which is appears secure and it’d be trivial to change
with a software update.

You could use SipHash-4-8 for when you’re committed to compatibility and CPU time
of the hash is irrelevant anyway. The only gain is security margin (not level) -
insurance against cryptanalysis.

https://131002.net/siphash/siphash_slides.pdf
https://131002.net/siphash

Packet in Packet

● Generate CRC checksum
● Create almost-flag (avoid bit-stuffing)
● Wait for lucky bit-errors
● (Place inner packet so scrambler helps luck)

Flag Address Control Protocol FlagFCS (CRC-16)Layer 3

Travis Goodspeed first introduced Packet in Packet to me at Ruxcon in 2012 - see
https://www.youtube.com/watch?v=iQk0GHXs8NY or http://travisgoodspeed.blogspot.
com.au/2011/09/remotely-exploiting-phy-layer.html

You’d have to be pretty lucky to come across a high-BER POS link behind a firewall
these days, but in general both radio and wire protocols should be protected by a
MAC or AEAD.

https://www.youtube.com/watch?v=iQk0GHXs8NY
http://travisgoodspeed.blogspot.com.au/2011/09/remotely-exploiting-phy-layer.html
http://travisgoodspeed.blogspot.com.au/2011/09/remotely-exploiting-phy-layer.html
http://travisgoodspeed.blogspot.com.au/2011/09/remotely-exploiting-phy-layer.html

Rsync algorithm
Signature phase (on receiver):

- Divide destination file into (700 byte) blocks
- Calculate rolling sum and strong sum on each block

Delta phase (on sender):
- Create hash table of rolling sum → {strong sum,file offset}
- Go through file byte-by-byte looking for {rolling sum,strong sum} matches,

generating either COPY or DATA commands
Delta phase (on receiver):

- COPY blocks - copy data from original file into new file
- DATA blocks - put raw data into new file

The rolling sum used by the rsync utility and librsync is addler32, but modulo 65536.

This function was chosen because it has the property that you can add and remove
single characters from the checksum without a full recalculation, which is used to roll-
in and out bytes in the delta phase.

The “safe” alternative would be to calculate the strong sum at each byte offset - quite
expensive CPU-wise (but would be more bandwidth-efficient).

Rsync - collisions

https://github.com/therealmik/rsync-collision

Generated from two md5 collisions.
First collision is just any collision, second reverses the effect on the rolling sum.
Can be generated in seconds.

Chosen-prefix collisions possible too*Conditions Apply - escalate privs?

Still not fixed. Be careful what you rsync.

Originally rsync used md4, but switch to md5 later due to security concerns. The
rsync maintainers haven’t updated to a newer hash function yet, and don’t seem to be
keen on doing so.

There’s a checksum seed argument, which for the md4 protocols prepends a seed,
turning md4 into somewhat of a MAC. But for the md5 protocol it appends the seed,
which is not effective due to the way MD5 works internally. (the same applies for
many other hash functions, including SHA-1 and the SHA-2 family)

In any case, the seed is only 32-bit and either chosen using transient but not secure
methods, or passed on the command line.

There’s a whole-file MD5 too, so chosen-prefix collisions may need to be in first block
of the file unless you can find a multi-IV collision somehow - I’d love to hear about it if
you know how!

https://github.com/therealmik/rsync-collision
https://github.com/therealmik/rsync-collision

Librsync
https://github.com/therealmik/librsync-collision
Same as rsync, but used md4 truncated to 64 bits.

Rather than attacking md4, I decided write a generic
birthday attack (as a warning to others).

1.0.0 replaced md4 with blake2b, 256 bits output
(Good response from maintainer).

Still vulnerable to Hash DoS (limited by rolling sum)

librsync is not the same codebase or maintainer as the rsync utility. It is used by
Dropbox, as well as the duplicity backup program.

Sorry folks, you can’t get Dropbox t-shirts anymore - they only pay cash for bugs now

https://github.com/therealmik/librsync-collision
https://github.com/therealmik/librsync-collision
https://github.com/librsync/librsync/issues/3
https://github.com/librsync/librsync/issues/3

Try this at home: MS-RDC
http://research.microsoft.com/pubs/64692/tr-2006-157.pdf

● Similar to rsync
● Used by DFS
● Microsoft acknowledges security issues:

○ https://msdn.microsoft.com/en-us/library/dd304647.aspx
○ http://msdn.microsoft.com/en-us/library/dd340879.aspx
○ Suggests using secure hash on whole file (and then what??)

So the difference between a Ruxmon and Ruxcon talk is that for Ruxcon I’d have
finished the research a week before presenting :)

It’d be interesting to see how DFS handles collisions - would it refuse to sync or would
it transfer without delta-compression?

http://research.microsoft.com/pubs/64692/tr-2006-157.pdf
http://research.microsoft.com/pubs/64692/tr-2006-157.pdf
https://msdn.microsoft.com/en-us/library/dd304647.aspx
https://msdn.microsoft.com/en-us/library/dd304647.aspx
http://msdn.microsoft.com/en-us/library/dd340879.aspx
http://msdn.microsoft.com/en-us/library/dd340879.aspx

Try this at home: memcacheDoS
Current memcached uses either Jenkins hash or Murmur
hash (runtime config).

This could possibly be combined with logic bugs in some
webapps that don’t expect items to disappear as soon as
you add them.

The type of logic bug I expect to find is where a programmer assumes that an newer
item wouldn’t expire before an older item, or simply that an item that was just inserted
will still be there.

This requires the potential for attackers to control the value of *keys* stored in
memcached, which pub-discussion suggests is rare.

Try this at home: unfair-queueing
Certain ISP routers implement fair-queuing as a bunch of
FIFO queues, and service each queue round-robin.

A hash of the source and destination addresses is used to
select which queue a packet goes in.

Adjust Bittorrent peer selection - all in one queue so it
doesn’t slow interactive traffic. Why pay extra for QoS?

On Cisco routers this is just:
interface x
 fair-queue

From what I’ve heard the hash used is Cisco-proprietary, so it may be EULA-secure ;)

Try this at home: disk deduplication
It’s unlikely that anyone set out using a non-cryptographic
hash function for disk deduplication.

There are unconfirmed rumours that major vendors are
using MD4 and MD5 still. That would be interesting.

Try this at home: Rowhammer ECC
While the original paper authors never claimed that ECC
RAM protects against Rowhammer, some vendors do.

ECC’s single bit-error correction property implies that the
same value can be expressed more than one way.

Understanding this property may be the key to rowhammer
exploitation on systems with ECC RAM.

Be careful what hardware you do this on - some blade chassis remember the RAM
chip is bad and insist on getting an engineer out to replace it (perhaps calling them
out automatically!).

Conclusion

Replace your insecure hash function with
᪸ ᫢ →᫢⋅

Don’t like the result? Then switch to a
cryptographically secure hash.

Thanks!

Michael Samuel

https://www.miknet.net/
Twitter: @mik235
GitHub: therealmik
IRL: The Oxford Scholar

https://www.miknet.net/
https://www.miknet.net/
https://github.com/therealmik

